QUADRATICS SUMMARY SHEET (EQUATIONS, FUNCTIONS, AND GRAPHS)

SQUARE ROOT PROPERTY

If $X^2 = k$, then $X = \pm \sqrt{k}$. [can be any algebraic expression, and k is any real number].

Ex: $(x-4)^2 = 5 \rightarrow x-4 = \pm \sqrt{5} \rightarrow x = 4 \pm \sqrt{5}$

QUADRATIC FORMULA

If
$$
ax^2 + bx + c = 0
$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Remark: Notice that the equation *must* be set equal to zero first!

Ex:
$$
4x^2 + 5x - 3 = 0
$$
 First note that $a = 4$, $b = 5$, and $c = -3$.

Substitute *carefully*:
$$
x = \frac{-5 \pm \sqrt{5^2 - 4(4)(-3)}}{2(4)} = \frac{-5 \pm \sqrt{25 - (-48)}}{8} = \frac{-5 \pm \sqrt{73}}{8}.
$$

Watch the signs! Especially when *a* or *c* is negative.

THE DISCRIMINANT

The type of solution to a quadratic equation depends upon what happens under the radical sign $(\sqrt{})$. Therefore, if you look at the Quadratic Formula above, you'll see that the $~$ " $b^2 - 4ac$ " part is important.

Definition: For the quadratic equation $ax^2 + bx + c = 0$, the **discriminant** is $b^2 - 4ac$.

If $b^2 - 4ac > 0$ and is a perfect square, then $ax^2 + bx + c = 0$ has **two rational solutions**.

If $b^2 - 4ac > 0$ but is not a perfect square, then $ax^2 + bx + c = 0$ has **two irrational solutions**.

If $b^2 - 4ac = 0$, then $ax^2 + bx + c = 0$ has one rational solution.

If $b^2 - 4ac < 0$, then $ax^2 + bx + c = 0$ has **two complex solutions** (involving the imaginary number).

*For our purposes here, *irrational solutions* involve square roots that are real but cannot be simplified, such as $\sqrt{3}$ or $\sqrt{11}$, while *rational solutions* no longer have square root signs after simplification, e.g. √9 = 3. The example above has two irrational solutions because of the $\pm\sqrt{73}$.

GRAPHING QUADRATIC EQUATIONS

The graphing method depends on whether you have the form $f(x) = ax^2 + bx + c$ or $f(x) = a(x - h)^2 + k$. If $a \neq 0$, the graph will always be a **parabola**. In both cases...

3) Find and plot the *y*-intercept by setting $x = 0$ and computing $f(x)$.

4) Find and plot the *x*-intercept(s) by setting $f(x) = 0$ (i.e. setting $y = 0$) and finding the *x*-value(s). ==

Example: Graph $f(x) = -(x + 1)^2 + 4$ and $f(x) = -x^2 - 2x + 3$: [You should verify that these are actually two different forms of the same function] [Please see a tutor for guidance through this example if necessary]

- 1) Since $a = -1$ is negative, the parabola will open downward.
- 2) a. The vertex $(h, k) = (-1, 4)$. Why does $h = -1$? Notice in the general formula, the *h* must **follow the minus sign**. So, think of $(x + 1)^2$ as $(x - -1)^2$. This means $h = -1$.

b.
$$
h = \frac{-b}{2a} = \frac{-(-2)}{2(-1)} = \frac{2}{-2} = -1
$$
 (just as it did above), and

$$
k = f\left(\frac{-b}{2a}\right) = f(-1) = -(-1)^2 - 2(-1) + 3 = -1 + 2 + 3 = 4
$$
 (just as it did above).

3) Substituting $x = 0$, we obtain $f(0) = 3$. So, the *y*-intercept is $(0, 3)$.

4) Set $f(x) = 0$ and solve for x. For practice, check both cases:

$$
0 = -(x + 1)^2 + 4 \quad \text{and} \quad 0 = -x^2 - 2x + 3
$$

In both cases, you should get $x = -3$ and $x = 1$. So the *x*-intercepts are $(-3, 0)$ and $(1, 0)$.

