QUADRATICS SUMMARY SHEET (EQUATIONS, FUNCTIONS, AND GRAPHS)

The two basic forms of quadratic equations are:	$y = ax^2 + bx + c$	$y = a(x-h)^2 + k$
The two basic forms of quadratic functions are:	$f(x) = ax^2 + bx + c$	$f(x) = a(x-h)^2 + k$

SQUARE ROOT PROPERTY

If $X^2 = k$, then $X = \pm \sqrt{k}$. [can be any algebraic expression, and k is any real number].

Ex: $(x-4)^2 = 5 \rightarrow x-4 = \pm\sqrt{5} \rightarrow x = 4 \pm \sqrt{5}$

QUADRATIC FORMULA

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

<u>Remark</u>: Notice that the equation *must* be set equal to zero first!

Ex:
$$4x^2 + 5x - 3 = 0$$
 First note that $a = 4$, $b = 5$, and $c = -3$.

Substitute carefully:
$$x = \frac{-5 \pm \sqrt{5^2 - 4(4)(-3)}}{2(4)} = \frac{-5 \pm \sqrt{25 - (-48)}}{8} = \frac{-5 \pm \sqrt{73}}{8}$$

Watch the signs! Especially when a or c is negative.

THE DISCRIMINANT

The type of solution to a quadratic equation depends upon what happens under the radical sign $(\sqrt{})$. Therefore, if you look at the Quadratic Formula above, you'll see that the " $b^2 - 4ac$ " part is important.

Definition: For the quadratic equation $ax^2 + bx + c = 0$, the **discriminant** is $b^2 - 4ac$.

If $b^2 - 4ac > 0$ and is a perfect square, then $ax^2 + bx + c = 0$ has two rational solutions.

If $b^2 - 4ac > 0$ but is not a perfect square, then $ax^2 + bx + c = 0$ has **two irrational solutions**.

If $b^2 - 4ac = 0$, then $ax^2 + bx + c = 0$ has one rational solution.

If $b^2 - 4ac < 0$, then $ax^2 + bx + c = 0$ has **two complex solutions** (involving the imaginary number).

*For our purposes here, *irrational solutions* involve square roots that are real but cannot be simplified, such as $\sqrt{3}$ or $\sqrt{11}$, while *rational solutions* no longer have square root signs after simplification, e.g. $\sqrt{9} = 3$. The example above has two irrational solutions because of the $\pm\sqrt{73}$.

GRAPHING QUADRATIC EQUATIONS

The graphing method depends on whether you have the form $f(x) = ax^2 + bx + c$ or $f(x) = a(x - h)^2 + k$. If $a \neq 0$, the graph will always be a **parabola**. In both cases...

1) If
$$a > 0$$
, then parabola opens upward.
2) Find the vertex.
a. For $f(x) = a(x - h)^2 + k$, the vertex is (h, k) .
b. For $f(x) = ax^2 + bx + c$, the vertex is $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$.

3) Find and plot the *y*-intercept by setting x = 0 and computing f(x).

4) Find and plot the *x*-intercept(s) by setting f(x) = 0 (i.e. setting y = 0) and finding the *x*-value(s).

<u>Example</u>: Grap [You

Graph $f(x) = -(x + 1)^2 + 4$ and $f(x) = -x^2 - 2x + 3$: [You should verify that these are actually two different forms of the same function] [Please see a tutor for guidance through this example if necessary]

- 1) Since a = -1 is negative, the parabola will open downward.
- 2) a. The vertex (h, k) = (-1, 4). Why does h = -1? Notice in the general formula, the *h* must follow the minus sign. So, think of $(x + 1)^2$ as $(x -1)^2$. This means h = -1.

b.
$$h = \frac{-b}{2a} = \frac{-(-2)}{2(-1)} = \frac{2}{-2} = -1$$
 (just as it did above), and
 $k = f\left(\frac{-b}{2a}\right) = f(-1) = -(-1)^2 - 2(-1) + 3 = -1 + 2 + 3 = 4$ (just as it did above).

3) Substituting x = 0, we obtain f(0) = 3. So, the y-intercept is (0, 3).

4) Set f(x) = 0 and solve for x. For practice, check both cases:

$$0 = -(x + 1)^2 + 4$$
 and $0 = -x^2 - 2x + 3$

In both cases, you should get x = -3 and x = 1. So the *x*-intercepts are (-3, 0) and (1, 0).

