FACTS ABOUT LOGARITHMS

DEFINITION :	For $a > 0$, $a \neq 1$, $log_a x = y$ means $a^y = x$.		
	In words, $f(x) = \log_a x$ is the <i>inverse function</i> of $f(x) = a^x$.		
INVERSE FUNCTIONS:	First, $f^{-1}(x) \neq \frac{1}{f(x)}$ (common misconception).		
Rather, $f^{-1}(x)$ is the <i>inverse function</i> of $f(x)$, which "reverses" everything that $f(x)$ does.			
FACT : $f^{-1}(f(x)) = f(f^{-1}(x)) = x$ for all x in the respective domains.			
OTHER DEFINITIONS:	The common log is $\log_{10} x$, usually written as "log x" The natural log is $\log_{10} x = (\ln(r))$ " ($e \approx 2.71828$)		
	$\prod_{e=1}^{n} \prod_{i=1}^{n} \prod_{i$		
PROPERTIES OF LOGARITHMS:			
i) $\log_a 1 = 0$	[this should be common sense, since $a^0 = 1$]		

i)	$\log_a 1 = 0$	[this should be common sense, since $a^0 = 1$
ii)	$\log_a a = 1$	[this should be common sense, since $a^1 = a$
iii)	$\log_a a^m = m$	[cancellation property]
iv)	$a^{\log_a m} = m$	[cancellation property]
v)	$\log_a(xy) = \log_a x + \log_a y$	[Careful – see warning below]
vi)	$\log_{a}\left(\frac{x}{y}\right) = \log_{a} x - \log_{a} y$	[Careful – see warning below]
vii)	$\log_a x^r = r \cdot \log_a x$	["Bring the exponent down in front"]

WARNINGS ABOUT PROPERTIES (V) AND (VI):

 $\log_{a}(x + y) \neq \log_{a} x + \log_{a} y$ [It does <u>not</u> work like the distributive law].

Also,
$$\frac{\log_a x}{\log_a y} \neq \log_a (x - y)$$
 and $\frac{\log_a x}{\log_a y} \neq \log_a \left(\frac{x}{y}\right)$. Basically, you can't simplify $\frac{\log_a x}{\log_a y}$.

Some Practice with Logarithms

- 1) $\log_{38} 38 =$ _____ 3) $\log_{64} 8 =$ _____ 5) $\log_{3} \sqrt[4]{\frac{1}{2}} =$ _____
- 7) Write as a single log and simplify: $\log_{b}(x^{2} - 25) - \log_{b}(x - 5)$

- 2) $52^{\log_{52} 9} =$ _____ 4) $\log_5 \frac{1}{25} =$ _____
- 6) $\ln e^{3a^2} =$ _____
- 8) Find all *x* such that $81^{x-1} = 27^{2x}$:

9) The logarithmic form of $\sqrt[5]{32} = 2$ is written as: a. $\log_{32} 2 = \frac{1}{5}$ b. $\log_{32} \frac{1}{5} = 2$ c. $\log_2 32 = \frac{1}{5}$ d. $\log_2 \frac{1}{5} = 32$ e. $\log_{\frac{1}{5}} 32 = 2$ f. none of these 10) Using properties of logarithms, $\log_a \sqrt[3]{4x} =$ a. $\sqrt[3]{\log_a 4} + \sqrt[3]{\log_a x}$ b. $\log_a \sqrt[3]{4} \cdot \log_a \sqrt[3]{x}$ c. $\frac{1}{3}[\log_a 4 \cdot \log_a x]$ d. $\frac{1}{3}[\log_a 4 + \log_a x]$ e. none of these

11) Using properties of logarithms, $\log_5(x^2 + 4x) =$ a. $\log_5 x^2 + \log_5 4x$ b. $2 \cdot \log_5(5x)$ c. $\log_5 x^2 \cdot \log_5 4x$ d. none of these

12) Find x such that $\log_{3}(x^{2}+17) - \log_{3}(x+5) = 1:$ If $\log_{m} 2 = p \text{ and } \log_{m} 3 = r,$ find $\log_{m}(144m^{7}).$