FUNCTIONS (Definitions and Basics)

A **function** is a rule that assigns each *x*-value to one unique *y*-value.

The set of all *x*-values being used is called the **<u>domain</u>**; the set of all corresponding *y*-values is called the **<u>range</u>**.

A function may be thought of as a machine, in which you input *x*-values, and the machine outputs *y*-values.

since x = 11 corresponds to both y = 4 and y = -4.

VERTICAL LINE TEST

If you have the graph representing a relation, a quick way to check if it qualifies as a function is the VERTICAL LINE TEST:

FUNCTIONS

If each *x*-value has only one *y*-value corresponding to it, then you can draw a vertical line through *any* part of the graph, and it will only cross through the graph *one time*.

NOT FUNCTIONS

If there is an *x*-value with *more than one y-value* corresponding to it, then a vertical line through that *x*-value will *cross the graph more than one time*.

These pass the vertical line test, so they're functions.

These fail the vertical line test, so they're not functions.

OPERATIONS ON FUNCTIONS

Functions can be added, subtracted, multiplied, and divided. The shorthand notation is provided in the example below:

 $q(x) = x^2 - 6$

Operation	Notation		Interpretation		Computation/Simplification
Addition:	$\overline{(f+g)(x)}$	=	f(x) + g(x)	=	$(2x + 10) + (x^2 - 6) = x^2 + 2x + 4$
Subtraction:	(f-g)(x)	=	f(x) - g(x)	=	$(2x+10) - (x^2 - 6) = -x^2 + 2x + 16$
Multiplication:	$(f \cdot g)(x)$	=	$f(x) \cdot g(x)$	=	$(2x+10)(x^2-6) = 2x^3+10x^2-12x-60$
Division:	$\left(\frac{f}{g}\right)(x)$	=	$\frac{f(x)}{g(x)}$	=	$\frac{2x+10}{x^2-6}$

PROBLEMS INVOLVING FUNCTION NOTATION

The expression "f(x) = y" is pronounced "f of x equals y", and it indicates that x is the input and y is the output.

EXAMPLE: Suppose f(x) = -2x + 3. a) f(-1) = ? b) Find x such that f(x) = -1

f(x) = 2x + 10

EXAMPLE:

<u>Check</u>: $f(2) = -2(2) + 3 = -4 + 3 = -1 \checkmark$