ABSOLUTE VALUE BARS IN EQUATIONS AND INEQUALITIES

In the following four rules, X and Y represent any algebraic expressions that may be inside the absolute value bars (not necessarily just a single variable). Also, "a" is assumed to be a *positive* number.

1) |X| = a means X = a or X = -a

<u>Ex.</u> $|2x-4| = 10 \longrightarrow 2x - 4 = 10$ or 2x - 4 = -10Now solve each equation separately.

2) |X| = |Y| means X = Y or X = -Y

<u>Ex</u>. $|3x+2| = |4x-9| \longrightarrow 3x+2 = 4x-9$ or 3x+2 = -(4x-9)Now solve each equation separately. Notice that in the equation on the right, the *entire expression* 4x - 9 was negated. You must remember to **distribute the negative sign**: -(4x-9) = -4x+9

3) $|X| \le a \text{ means } -a \le X \le a$

Ex.
$$|7x+4| \le 30 \longrightarrow -30 \le 7x+4 \le 30$$

4) $|X| \ge a$ means $X \ge a$ or $X \le -a$

<u>Ex.</u> $|5x| \ge 11 \longrightarrow 5x \ge 11$ or $5x \le -11$

REMEMBER: If necessary, isolate the absolute value bars first before applying the above rules!

<u>Ex</u> .	2 x-4 +3=9	\rightarrow	2 x-4 + 3 = 9 -3 - 3	
			2 x-4	= 6
		\rightarrow	$\frac{2 x-4 }{2}$	$=\frac{6}{2}$
		\rightarrow	x - 4	= 3

Now apply Rule (1) from above.

<u>REMEMBER</u>: Rules (1) and (3) only make sense if *a* is positive. Otherwise, "no solution". In Rule (4), if *a* is negative, then the inequality is *always true* (no work needed!).

Ex's |2x+1| = -5 and $|3x-9| \le -4$ have **no solutions.** |x-1| > -2 is always true.