PROPERTIES of REAL NUMBERS (\mathbb{R})

Commutative Property of Addition & Multiplication

• **Commutative Properties** state that the order in which two real numbers are added or multiplied does not affect their sum or product.

Associative Property of Addition & Multiplication

• **Associative Properties** state that regrouping numbers that are added or multiplied does not affect their sum or product.

For all real numbers **a**, **b**, & **c**... Addition: **Multiplication**: (a+b)+c=a+(b+c)(ab)c = a(bc)Ex.: If a = 2, b = 3 & c = 4, then... (2+3)+4=2+(3+4) $(2 \bullet 3) \bullet 4 = 2 \bullet (3 \bullet 4)$ (5)+4=2+(7) $(6) \bullet 4 = 2 \bullet (12)$ 9 = 924 = 24Statement(s) (TRUE) (TRUE)

CAUTION: Commutative & Associative Properties are Not Applicable under <u>Subtraction</u> and <u>Division</u> Operations.

Check the next **Counterexamples** using the real numbers a = 8, b = 4 and c = 2:

Commutative Property for...

Subtraction:Division:Subtraction:Division: $a-b \neq b-a$ $a \div b \neq b \div a$ $(a-b)-c \neq a-(b-c)$ $(a \div b) \div c \neq a \div (b \div c)$

Associative Property for...

$$8-4\stackrel{?}{=}4-8$$
 $8 \div 4\stackrel{?}{=}4 \div 8$ $(8-4)-2\stackrel{?}{=}8-(4-2)$ $(8 \div 4)\div 2\stackrel{?}{=}8 \div (4 \div 2)$ $4 \ne -4$ $2 \ne 0.5$ $(4)-2\stackrel{?}{=}8-(2)$ $(2)\div 2\stackrel{?}{=}8 \div (2)$ $(FALSE)$ Statements (FALSE) $2 \ne 6$ $1 \ne 4$

(FALSE) Statements (FALSE)

PROPERTIES of REAL NUMBERS (\mathbb{R})

Distributive Property of *Multiplication* over *Addition*

• **Distributive Property** states that multiplication distributes over addition or difference between two or more terms.

For all real numbers \boldsymbol{a} , \boldsymbol{b} , and \boldsymbol{c} , distribute or multiply factor \boldsymbol{a} , as a common factor, over the sum or difference of the terms \boldsymbol{b} & \boldsymbol{c} ...

Multiplication over Addition:

Multiplication over Difference:

Remember that Condition on Subtraction:

$$(b-c) \neq (c-b).$$

Ex.: If $\mathbf{a} = 2$, $\mathbf{b} = 3$, & $\mathbf{c} = 4$, then...

LHS	RHS		LHS	RHS
By Adding the like terms inside parentheses.	By distributing the factor 2 over the sum inside parentheses.		By subtracting the like terms inside parentheses.	By distributing the factor 2 over the difference inside parentheses.
2(3 + 4)	= 2(3)+2(4)		2(3-4)	= 2(3)-2(4)
2(7)	= 6 + 8		2(-1)	= 6-8
14	= 14		- 2	= -2
(TRUE) Stat		temer	nt(s) (T	RUE)

Identity Property of Addition & Multiplication

• **Identity Properties** state that when adding or multiplying a real number, the result is that same real number. For all real numbers a...

In Addition, the Additive Identity is **ZERO**:

In Multiplication, the Multiplicative Identity is **ONE**:

$$a + 0 = 0 + a = a$$

$$a \bullet 1 = 1 \bullet a = a$$

Inverse Property of Addition & Multiplication

Inverse Properties state that when adding or multiplying a real number, the result is equal to such <u>Identity</u> Number, <u>ZERO</u> for Addition and <u>ONE</u> for Multiplication. For all real numbers *a*, except 0 for multiplication...

In Addition, the Additive Inverse or Opposite of α is ($-\alpha$):

$$a + (-a) = (-a) + a = 0$$
.

In Multiplication, the Multiplicative Inverse or Reciprocal of a is $\frac{1}{a}$, and $a \ne 0$: $a \bullet \frac{1}{a} = \frac{1}{a} \bullet a = 1$.