IMPERIAL COMMUNITY COLLEGE DISTRICT IMPERIAL VALLEY COLLEGE

COURSE OUTLINE

DIVISION: <u>Science</u>, Mathematics and Engineering DATE: <u>September 2000</u>

 COURSE TITLE:
 Programming in FORTRAN
 COURSE NO.:
 Math 130
 UNITS:
 3

LEC HRS. 3 LAB HRS. HRS. TBA

If cross-referenced, please complete the following

COURSE NO.(s) _____ COURSE TITLE

I. COURSE/CATALOG DESCRIPTION:

A practical course covering the fundamentals of the FORTRAN programming language as adapted to a variety of applications.

II. A. PREREQUISITES, if any:

B. COREQUISITES, if any:

C. RECOMMENDED PREPARATION, if any:

Math 090 with a grade of "C" or better

III. GRADING CRITERIA:

- <u>X</u> Course must be taken on a "letter-grade" basis only.
- _____ Course may be taken on a "credit" basis or for a letter grade.
- _____ Course must be taken on a "credit" basis only.

IV. MEASURABLE COURSE OBJECTIVES AND MINIMUM STANDARDS FOR GRADE OF "C":

- 1. The student will identify the basic components of a computer and explain the underlying principles of programming and the art of debugging.
- 2. The student will demonstrate a basic knowledge of the building blocks of the FORTRAN language.
- 3. The student will apply the rules and regulations associated with the building of arithmetic statements in FORTRAN.
- 4. The student will summarize the concepts and processes associated with input and output formulations.
- 5. The student will demonstrate a logical and systematic foundtion of programming techniques in a step-by-step manner.
- 6. The student will recognize a variety of decision-type statements and will utilize them in a most efficacious fashion.
- 7. The student will identify the essential features of the DO-loop.
- 8. The student will apply the basic and useful techniques of array formation and usage in various dimensions, and will recognize relevant declaration statements.
- 9. The student will demonstrate the many diverse format types useful in input and output descriptions.
- 10. The student will differentiate and use the various types of functions, sub-programs, and subroutines.

V. CORE CONTENT TO BE COVERED IN ALL SECTIONS:

CORE CONTENT	<u>APPROX. %</u> OF COURSE
 Overview of general concepts A. Computer operations B. Programming C. Flowcharting D. Language structure E. Debugging F. Documentation 	10%
 Defining symbolism and labeling A. FORTRAN program records B. Character set for FORTRAN C. Constants and variables D. Identifiers 	10%
 3. FORTRAN arithmetic statements A. Order of operations B. Arithmetic operations C. Replacement statements D. Intrinsic functions 	10%
4. Inputs and outputsA. StatementsB. Formal statementsC. Input and output of alphanumeric data	10%
5. Programs and their structuresA. Structure of the programB. AlgorithmsC. Top-down programming	10%
6. Control statementsA. Statement of GO TO typeB. Logical operationsC. Logical IF statements	10%
 7. The DO statement A. The concept of repetition B. DO-loop syntax C. Usage of DO-loops D. Nested DO-loops 	10%
 8. Nature and use of arrays A. One-dimensional arrays B. Multi-dimensional arrays C. Use of matrices in processing and storing information D. Array syntax as applied to DIMENSION, TYPES, DATA and EQUIVALENCE statements 	10%
 9. Formatting A. The FORMAT statement B. Field descriptors C. Output representation and editing 	10%
 FUNCTIONS sub-programs, SUBROUTINES and relevant declarations A. Intrinsic functions B. Statement functions C. Subprogram functions D. SUBROUTINES E. COMMON and EXTERNAL declarations 	10%

VI. METHOD OF EVALUATION TO DETERMINE IF OBJECTIVES HAVE BEEN MET BY STUDENTS: (check all that apply)

Essay X	Class Activity <u>X</u>	Written Assignments X
Problem Solving Exercise <u>X</u>	Final Exam <u>X</u>	Oral Assignments <u>X</u>
Skill Demonstration <u>X</u>	Objective <u>X</u>	Quizzes X
Other X		

VII. INSTRUCTIONAL METHODOLOGY: (Check all that apply)

Lecture	X	Discussion X	Demonstration X
Audio Visual	X	Group Activity <u>X</u>	Lab Activity <u>X</u>
Computer Assisted Instruction	X	Individual Simulation/ Assistance <u>X</u>	Case Study X

Two (2) hours of independent work done out of class per each hour of lecture or class work, or 3 hours lab, practicum, or the equivalent per unit.

Other

VIII. TEXTBOOK(S) AND SUPPLEMENT(S):

Brooks. Problem Solving with Fortran 90. Springer Verlag, 1997.

- Forsythe. Contemporary Computing for Engineers and Scientists Using Fortran 90. PWS Publishing, 1997.
- Myler. *Fundamentals of Engineering Programming with C and Fortran.* Cambridge University Press, 1998.
- Smith. Programming in Fortran 90. Springer Verlag, 1997.
- Wille, Advanced Scientific Fortran. John Wiley and Sons, 1999.