IMPERIAL COMMUNITY COLLEGE DISTRICT IMPERIAL VALLEY COLLEGE

COURSE OUTLINE

 DIVISION:
 Science, Mathematics and Engineering
 DATE:
 September 2006

 COURSE TITLE:
 Elementary Differential Equations
 COURSE NO.:
 MATH 220
 UNITS: _3

LEC HRS. 3 LAB HRS. HRS. TBA

If cross-referenced, please complete the following

COURSE NO.(s) _____ COURSE TITLE

I. COURSE/CATALOG DESCRIPTION:

First order differential equations with applications. Linear differential equations of higher order. Applications of second order differential equations, differential equations with variable coefficients, Laplace transforms.

II. A. PREREQUISITES, if any:

MATH 194 with a grade of "C" or better.

B. COREQUISITES, if any:

None

C. RECOMMENDED PREPARATION, if any:

None

III. GRADING CRITERIA:

- <u>X</u> Course must be taken on a "letter-grade" basis only.
- _____ Course may be taken on a "credit" basis or for a letter grade.
- _____ Course must be taken on a "credit" basis only.

IV. MEASURABLE COURSE OBJECTIVES AND MINIMUM STANDARDS FOR GRADE OF "C":

- 1. The student will solve first order differential equations.
- 2. The student will solve application problems involving first order differential equations.
- 3. The student will solve differential equations of order greater than one.
- 4. The student will solve application problems involving second order differential equations.
- 5. The student will solve differential equations using power series.
- 6. The student will solve application problems using Laplace transform.

V. CORE CONTENT TO BE COVERED IN ALL SECTIONS:

CORE CONTENT	APPROX. % OF COURSE
 First-Order Differential Equations A. Separation of variables B. Homogeneous differential equations C. Exact differential equations D. Linear differential equations E. Substitutions. 	15%
 2 Applications of First-Order Differential Equations A. Orthogonal trajectories B. Applications of linear differential equations C. Applications of nonlinear equations. 	15%
 3. Higher-Order Differential Equations A. Preliminary theories of higher order differential equations B. Constructing and solution C. Homogeneous and nonhomogeneous linear equations D. Variation of parameters. 	15%
 4. Applications A. Simple harmonic motion B. Damped motion C. Forced motion D. Electric circuits and other analogous systems. 	15%
 5. Power Series A. Cauchy-Euler equation B. Power series solutions C. Solutions about singular points D. Bessel's and Legendre's equations. 	20%
 6. Laplace Transforms A. Laplace transforms B. Inverse Laplace transforms C. Operational properties D. Applications. 	20%

VI. METHOD OF EVALUATION TO DETERMINE IF OBJECTIVES HAVE BEEN MET BY STUDENTS: (check all that apply)

Essay	X	Class Activity <u>X</u>	Written Assignments <u>X</u>
Problem Solving Exercise	X	Final Exam <u>X</u>	Oral Assignments <u>X</u>
Skill Demonstration	X	Objective <u>X</u>	Quizzes X
Other	_X		

VII. INSTRUCTIONAL METHODOLOGY: (Check all that apply)

Lecture	X	Discussion <u>X</u>	Demonstration X
Audio Visual	X	Group Activity <u>X</u>	Lab Activity X
Computer Assisted Instruction	X	Individual Simulation/ Assistance <u>X</u>	Case StudyX
On-Line	X		

Two (2) hours of independent work done out of class per each hour of lecture or class work, or 3 hours lab, practicum, or the equivalent per unit.

Other

VIII. TEXTBOOK(S) AND SUPPLEMENT(S):

- Zill, Dennis. A First Course in Differential Equations with Modeling Applications. 8th edition. Brooks/Cole, 2005.
- Edwards, H. and Penney, D. *Elementary Differential Equations*. 5th edition. Prentice Hall, 2004.
- Ricardo, Henry. A Modern Introduction to Differential Equations. 1st edition. Houghton Mifflin, 2003.
- Nagle, R., Saff, E. and Snider, A. *Fundamentals of Differential Equations*. 6th edition. Addison Wesley, 2004.

Trench, William. Elementary Differential Equations. 1st edition. Brooks/Cole, 2000.